176 research outputs found

    Following Cu Microstructure Evolution in CuZnO/Al_{2}O_{3}(−Cs) Catalysts During Activation in H_{2} using in situ XRD and XRD-CT

    Get PDF
    Understanding how the microstructure of the active Cu0 component in the commercially applicable Cu/ZnO/Al_{2}O_{3}(−Cs_{2}O) low-temperature water-gas shift catalyst evolves under various H_{2} partial pressures in the presence/absence of a Cs promoter during thermal activation has been investigated. Time-resolved XRD and spatially-resolved XRD-CT data were measured as a function of H_{2} concentration along a packed bed reactor to elucidate the importance of the zincite support and the effect of the promoter on Cu sintering mechanisms, dislocation character and stacking fault probability. The rate of Cu reduction showed a dependency on [Cs], [H_{2}] and bed height; lower [Cs] and higher [H_{2}] led to a greater rate of metallic copper nanoparticle formation. A deeper analysis of the XRD line profiles allowed for determining a greater edge character to the dislocations and subsequent stacking fault probability was also observed to depend on higher [H_{2}], Cu^{0} (and ZnO) crystallite sizes, increased [ZnO] (30 wt.%, sCZA) and lower temperature. The intrinsic activity of Cu/ZnO/Al_{2}O_{3} methanol synthesis catalysts has been intimately linked to the anisotropic behaviour of copper, and thus the presence of lattice defects; to the best knowledge of the authors, this study is the first instance in which this type of analysis has been applied to LT-WGS catalysts

    Neuroplasticity pathways and protein-interaction networks are modulated by vortioxetine in rodents

    Get PDF
    Additional file 2: Figure S1. Merged mouse and rat network (mapped to human proteins) and summary of biological functions of each sub-network. Biological functions were manually extracted from the Function and Gene Ontology fields of the UniProt protein entries. The genes with dark, bold borders were used to build the network of protein–protein interaction partners. Squares with bold borders represent upregulated targets from the rat network, and circles with bold borders indicate differentially-regulated targets from the mouse network. The arrowheads indicate the common targets found in mouse and rat networks. This network of physically-interacting proteins containing clusters related to synaptic plasticity, synaptic transmission, neurodevelopment, cell growth, metabolism, and apoptosis, was significantly modulated in both mouse and rat

    Strength in numbers : collaborative science for new experimental model systems

    Get PDF
    The work is made available under the Creative Commons CCO public domain dedication.. The definitive version was published in PLoS Biology 16 (2018): e2006333, doi:10.1371/journal.pbio.2006333.Our current understanding of biology is heavily based on a small number of genetically tractable model organisms. Most eukaryotic phyla lack such experimental models, and this limits our ability to explore the molecular mechanisms that ultimately define their biology, ecology, and diversity. In particular, marine protists suffer from a paucity of model organisms despite playing critical roles in global nutrient cycles, food webs, and climate. To address this deficit, an initiative was launched in 2015 to foster the development of ecologically and taxonomically diverse marine protist genetic models. The development of new models faces many barriers, some technical and others institutional, and this often discourages the risky, long-term effort that may be required. To lower these barriers and tackle the complexity of this effort, a highly collaborative community-based approach was taken. Herein, we describe this approach, the advances achieved, and the lessons learned by participants in this novel community-based model for research.The research efforts, connections, and collaborations described in this paper and protocols.io (https://www.protocols.io/) were supported by the Gordon and Betty Moore Foundation’s Marine Microbiology Initiative

    Blending human and artificial intelligence to support autistic children’s social communication skills

    Get PDF
    This paper examines the educational efficacy of a learning environment in which children diagnosed with Autism Spectrum Conditions (ASC) engage in social interactions with an artificially intelligent (AI) virtual agent and where a human practitioner acts in support of the interactions. A multi-site intervention study in schools across the UK was conducted with 29 children with ASC and learning difficulties, aged 4-14 years old. For reasons related to data completeness and amount of exposure to the AI environment, data for 15 children was included in the analysis. The analysis revealed a significant increase in the proportion of social responses made by ASC children to human practitioners. The number of initiations made to human practitioners and to the virtual agent by the ASC children also increased numerically over the course of the sessions. However, due to large individual differences within the ASC group, this did not reach significance. Although no evidence of transfer to the real-world post-test was shown, anecdotal evidence of classroom transfer was reported. The work presented in this paper offers an important contribution to the growing body of research in the context of AI technology design and use for autism intervention in real school contexts. Specifically, the work highlights key methodological challenges and opportunities in this area by leveraging interdisciplinary insights in a way that (i) bridges between educational interventions and intelligent technology design practices, (ii) considers the design of technology as well as the design of its use (context and procedures) on par with one another, and (iii) includes design contributions from different stakeholders, including children with and without ASC diagnosis, educational practitioners and researchers

    Resettlement experiences and resilience in refugee youth in Perth, Western Australia

    Get PDF
    Background: In Australia, the two major pathways of refugee entry are the United Nations High Commissioner for Refugees resettlement programme and irregular maritime arrivals (IMAs) seeking asylum. The Australian Government’s policies towards IMAs since July 2013 are controversial, uncompromising and consistently harsh, with asylum seekers held in detention centres for prolonged periods. Refugees and asylum seekers have distinct and unique stressors that make resettlement difficult. Methods: This exploratory study examines resettlement experiences for refugee youth in Western Australia using the psychosocial conceptual framework and qualitative methods. Focus group discussions and key informant interviews were undertaken with verbatim transcripts analysed using thematic analysis to identify themes. Results: Themes documented that language and its impact, and experience with education, health, and social activities, support structures provided to youth and supporting future aspirations as critical to successful resettlement. This exploratory study contributes to developing a broader understanding of the resettlement experiences of refugee youth, drawing on their current and past experiences, cultural differences and mechanisms for coping. Conclusion: Fluency in English language, especially spoken, was a facilitator of successful resettlement. Our results align with previous studies documenting that support programs are vital for successful resettlement. Although faced with immense difficulties refugee youth are resilient, want to succeed and have aspirations for the future. Strategies and recommendations suggested by refugee youth themselves could be used for developing interventions to assist successful resettlement

    GHOST Commissioning Science Results II: a very metal-poor star witnessing the early Galactic assembly

    Full text link
    This study focuses on Pristine_180956.78\_180956.78−-294759.8294759.8 (hereafter P180956, [Fe/H] =−1.95±0.02=-1.95\pm0.02), a star selected from the Pristine Inner Galaxy Survey (PIGS), and followed-up with the recently commissioned Gemini High-resolution Optical SpecTrograph (GHOST) at the Gemini South telescope. The GHOST spectrograph's high efficiency in the blue spectral region (3700−48003700-4800~\AA) enables the detection of elemental tracers of early supernovae (e.g. Al, Mn, Sr, Eu), which were not accessible in the previous analysis of P180956. The star exhibits chemical signatures resembling those found in ultra-faint dwarf systems, characterised by very low abundances of neutron-capture elements (Sr, Ba, Eu), which are uncommon among stars of comparable metallicity in the Milky Way. Our analysis suggests that P180956 bears the chemical imprints of a small number (2 or 4) of low-mass hypernovae (\sim10-15\msun), which are needed to reproduce the abundance pattern of the light-elements (e.g. [Si, Ti/Mg, Ca] ∼0.6\sim0.6), and one fast-rotating intermediate-mass supernova (\sim300\kms, \sim80-120\msun). Both types of supernovae explain the high [Sr/Ba] of P180956 (∼1.2\sim1.2). The small pericentric (\sim0.7\kpc) and apocentric (\sim13\kpc) distances and its orbit confined to the plane (\lesssim 2\kpc), indicate that this star was likely accreted during the early Galactic assembly phase. Its chemo-dynamical properties suggest that P180956 formed in a system similar to an ultra-faint dwarf galaxy accreted either alone, as one of the low-mass building blocks of the proto-Galaxy, or as a satellite of Gaia-Sausage-Enceladus. The combination of Gemini's large aperture with GHOST's high efficiency and broad spectral coverage makes this new spectrograph one of the leading instruments for near-field cosmology investigations.Comment: Submitted to MNRAS. 8 figures, 15page

    Molecular characterization of the conoid complex in Toxoplasma reveals its conservation in all apicomplexans, including Plasmodium species

    Get PDF
    The apical complex is the instrument of invasion used by apicomplexan parasites, and the conoid is a conspicuous feature of this apparatus found throughout this phylum. The conoid, however, is believed to be heavily reduced or missing from Plasmodium species and other members of the class Aconoidasida. Relatively few conoid proteins have previously been identified, making it difficult to address how conserved this feature is throughout the phylum, and whether it is genuinely missing from some major groups. Moreover, parasites such as Plasmodium species cycle through 3 invasive forms, and there is the possibility of differential presence of the conoid between these stages. We have applied spatial proteomics and high-resolution microscopy to develop a more complete molecular inventory and understanding of the organisation of conoid-associated proteins in the model apicomplexan Toxoplasma gondii. These data revealed molecular conservation of all conoid substructures throughout Apicomplexa, including Plasmodium, and even in allied Myzozoa such as Chromera and dinoflagellates. We reporter-tagged and observed the expression and location of several conoid complex proteins in the malaria model P. berghei and revealed equivalent structures in all of its zoite forms, as well as evidence of molecular differentiation between blood-stage merozoites and the ookinetes and sporozoites of the mosquito vector. Collectively, we show that the conoid is a conserved apicomplexan element at the heart of the invasion mechanisms of these highly successful and often devastating parasites

    Access, participation and capabilities: Theorising the contribution of university bursaries to students’ well-being, flourishing and success

    Get PDF
    For the last 10 years, universities in England have been expected to offer financial support to low-income students alongside that provided by government. These bursaries were initially conceived in terms of improving access for under-represented groups, but attention has turned to their role in supporting student retention and success. This paper reports on two qualitative studies undertaken by contrasting universities that have been brought together due to their complementary findings. Semi-structured interviews were undertaken with a total of 98 students. Students’ views on bursaries and how they impact on their lives are reported and used to develop a descriptive model of the web of choices that students have in balancing finances and time. This is contextualised within Sen’s ‘capabilities approach’, to argue that providing access to higher education is insufficient if disadvantaged students are not able to flourish by participating fully in the university experience
    • …
    corecore